Getting to a fossil free internet by 2030

A tour of the tech and policy changes to get us there

GREENWEBFOUNDATION.ORG

Hello!

I'm Chris. My background:

Loco2 - Low CO2 Travel in Europe by train A.M.E.E (Avoid Mass Extinction Engine) - CO2 calculation as an API Icebreaker One - data infrastructure for a net zero future Spend Network - direct public spending for net zero

Green Web Foundation - make the web green

Green Software Foundation - Policy WG chair

Branch Magazine - climate / tech magazine Environment Variables - podcast on green software

Contact: chris@thegreenwebfoundation.org | @mrchrisadams

What we'll cover today

1. Why a fossil free internet by 2030

2. A framework to think about it -Consumption, Intensity, Direction

3. Using the framework to look ahead at policy and tech changes

We are in a climate crisis largely because we keep burning fossil fuels, instead of finding a path off them

- 1. **Achievable** Big firm buy in already, but doable at small scale too.
- 2. Save carbon climate emergency, remember?
- 3. **Save lives** 5m+ avoidable deaths / year from poor air quality globally, primarily from burning fossil fuels
- 4. **Save money** fossil fuels are expensive with volatile prices
- 5. **Improve retention among staff** ppl 💚 greener firms
- 6. Energy security geopolitics and local resiliency

A framework to think about digital sustainability: *Consumption, Intensity, Direction*

A model for thinking about digital sustainability - **CID**

Consumption

Can I change how much we need?

Intensity

Can I change how much harm is done?

Direction

Can I change where we are headed?

A model for thinking about digital sustainability - **CID**

Consumption

Can I change how much we need?

Intensity

Can I change how much harm is done?

Direction

Can I change where we are headed?

Image: Dr. Robert Rohde / Data: Global Carbon Project & IPCC

" the Paris Agreement will require the information and communication technology (ICT) industry to reduce greenhouse gas (GHG) emissions by 45 per cent from 2020 to 2030

2020 - ITU, GeSI, GSMA & SBTi set science-based pathway in line with Paris Agreement - ICT industry to reduce greenhouse gas emissions by 45 per cent by 2030

How are we doing so far?

	2015	2021	Change
Internet users	3 billion	4.9 billion	+ 60 %
Internet traffic	0.6 ZB	3.4 ZB	+ 440 %
Data centre workloads	180 million	650million	+ 260 %
Data centre energy use (excluding crypto)	200 TWh	220 - 320 TWh	+ 10-60%
Crypto mining energy use	4 TWh	100 - 140 TWh	+ 2,300 - 3,300%
Data transmission network energy use	220 TWh	260 - 340 TWh	+ 20 - 60%

Performance gains after Moore's law ends. In the post-Moore era, improvements in computing power will increasingly come from technologies at the "Top" of the computing stack, not from those at the "Bottom", reversing the historical trend.

A model for thinking about digital sustainability - **CID**

Consumption

Can I change how much we need?

Intensity

Can I change how much harm is done?

Direction

Can I change where we are headed? High carbon intensity Mining coal, burning it to create steam, to turn turbines to generate electricity.

Typical carbon intensity:

~ 1001g CO2eq / KWh

Source: NREL: Life Cycle Emissions Factors for Electricity Generation Technologies

Lower carbon intensity Harvesting energy to generate power directly.

Typical carbon intensity: ~ 57g CO2eq / KWh

Source: NREL: Life Cycle Emissions Factors for Electricity Generation Technologies

World electricity generation by source

Percentage share

Common strategies for improving carbon intensity of compute

- geographic migration: move workloads through space to where more clean energy is on the grid
- 2. **temporal migration:** move workloads *through time* to when more clean energy is on the grid

A model for thinking about digital sustainability - **CID**

Consumption

Can I change how much we need?

Intensity

Can I change how much harm is done?

Direction

Can I change where we are headed?

TECHNOLOGY IS A SOCIAL, POLITICAL **AND ENVIRONMENTAL** ACCELERANT

CADE DIEHM, New Design Congress

What's the carbon footprint of that oil and gas contract?

Reported corporate emissions for 2019, compared to estimated annual emissions from single oil and gas contract

GREEN WEB FOUNDATION

Source: https://nextjournal.com/greenweb/whats-the-carbon-footprint-of-that-oil-and-gas-ai-contract

REPOWERING	Country	State	Fleet Owner	Plant Name				
COAL	All	All	✓ All ✓	All		\sim		Reset
			Operational Coal Plants yet to be repowered	Retireme	ent Year by C	apacity		
olo Overview	2399		Bassie (John St	(Blank)	2024 2025	2026	2027	2028
Carbon Emissions	Number of operational plants		CORTH AMERICA	2020				
\$ Costs	2257 Nameplate Capacity (GWe)		Atlantic Ocean	2021	2029	2034	2036	2037
🖯 Plant Owners 🗸 🗸	21		AFRICA SOUTH AMERICA Indian Ocean AUST	2022	2031	2038		2045
	Average of Remaining plant lifetime (vea	rs)		2023	2032	2040		

infition, Earthstar Geographics SIO, © 2022 Microsoft Corporation, © OpenStreetMap Terms

Using the framework to look ahead at policy and tech changes

Emerging sustainability reporting standards

Emerging corporate reporting standards

ISO Net Zero Guidelines: Net zero claims are no longer considered credible without halving emissions by 2030, if they don't include all supply chain, and if they don't have interim targets every 3-5 years.

EU CSRD (European Union Corporate Sustainability Reporting Directive): Comes into force in 2024, for every company with more than 250 employees. You need to start collecting data in 2023 to report for 2024!

IFRS (International Financial Reporting Standards) Foundation: voted **unanimously to require company disclosures on Scope 1**, Scope 2 and **Scope 3 greenhouse gases (i.e. entire supply chain)**.

Consumption Can I change how much we need?

Emerging sustainable software standards

Source: https://eco.kde.org/blog/2022-09-28_okular_blue-angel-award-ceremony/

Green Metrics tool - end to end measurement

Measuring from the outside with the AGPL licensed Green Metrics Tool (GMT)

Green Metrics tool - output

Tracking direct usage with Firefox profiler

You can measure from the inside too!

If you have used profiler or perf tool, you can measure to optimise for consumption of resources.

Adding carbon metrics with CO2.js

Optimising the right parts for consumption

Table 5. Pareto optimal sets for different combination of objectives.					
Time & Memory	Energy & Time	Energy & Memory	Energy & Time & Memory		
C • Pascal • Go	С	C • Pascal	C • Pascal • Go		
Rust • C++ • Fortran	Rust	Rust • C++ • Fortran • Go	Rust • C++ • Fortran		
Ada	C++	Ada	Ada		
Java • Chapel • Lisp • Ocaml	Ada	Java • Chapel • Lisp	Java • Chapel • Lisp • Ocaml		
Haskell • C#	Java	OCaml • Swift • Haskell	Swift • Haskell • C#		
Swift • PHP	Pascal • Chapel	C# • PHP	Dart • F# • Racket • Hack • PHP		
F# • Racket • Hack • Python	Lisp • Ocaml • Go	Dart • F# • Racket • Hack • Python	JavaScript • Ruby • Python		
JavaScript • Ruby	Fortran • Haskell • C#	JavaScript • Ruby	TypeScript • Erlang		
Dart • TypeScript • Erlang	Swift	TypeScript	Lua • JRuby • Perl		
JRuby • Perl	Dart • F#	Erlang • Lua • Perl			
Lua	JavaScript	JRuby			
	Racket				
	TypeScript • Hack				
	PHP				
	Erlang				
	Lua • JRuby				
	Ruby				

Intensity Can I change how much harm is done?

Green energy - annual vs hourly

FIG. 2

Hourly carbon-free energy performance at an example data center

While Google buys large amounts of wind and solar power (symbolized by green spikes below), these resources are variable, meaning that our data centers still sometimes rely on carbon-based resources.

Common strategies for improving carbon intensity of compute

- spatial migration: move workloads through space to where more clean energy is on the grid
- 2. **temporal migration:** move workloads *through time* to when more clean energy is on the grid

kubernetes

low carbonetes

For more: see the Carbon Intensity Aware Scheduling in Kubernetes session at FOSDEM today. Slides are online already!

What our computers run on

Туре	Carbon intensity	Dispatchable	Supply limited by	
On-site renewables	Very low	No (in most cases)	Local environment	
Energy storage (usually batteries)	Derived from source	Yes	Local storage capacity	
			Local grid capacity	
Grid Energy	Variable	Yes	Fallout from violent invasions of neighbouring countries, pushing up prices beyond affordability	

Hypervisors

We can use virtualisation to take a big physical machine, and abstract the hardware into resources like compute, network, ram and storage.

Once we done this we have fine grained control over how we allocate the resources, to compose into sets of smaller virtual machines.

This allows for more efficient use of the hardware, and respond to changes more easily.

Ecovisors

You can do the same with the *power computers use*. Power is usually presented as a single stream, even when we have batteries built in laptops.

But if you virtualise the power as *grid*, *renewables* and *energy storage*, then you can allocate these resources the like how you allocate compute, memory, storage, and network with virtual machines

Ecovisors

Virtual machines and other kinds of containers are allocated set amounts of each kind of power in addition to the usual resources, and given visibility into the amounts they have, on a schedule.

Applications can do more when there is more green energy available, and do less when there less available, to maximise the use of green energy and reduce carbon intensity.

A sample Ecovisor API for an application to implement

Function Name	Туре	Input	Return Value	Description
<pre>set_container_powercap()</pre>	Setter	ContainerID, kW	N/A	Set a container's power cap
<pre>set_battery_charge_rate()</pre>	Setter	kW	N/A	Set battery charge rate until full
<pre>set_battery_max_discharge()</pre>	Setter	kW	N/A	Set max battery discharge rate
<pre>get_solar_power()</pre>	Getter	N/A	kW	Get virtual solar power output
<pre>get_grid_power()</pre>	Getter	N/A	kW	Get virtual grid power usage
get_grid_carbon()	Getter	N/A	g∙CO ₂ /kW	Get current grid carbon intensity
<pre>get_battery_discharge_rate()</pre>	Getter	N/A	kW	Get current rate of battery discharge
<pre>get_battery_charge_level()</pre>	Getter	N/A	kWh	Get energy stored in virtual battery
<pre>get_container_powercap()</pre>	Getter	ContainerID	kW	Get a container's power cap
<pre>get_container_power()</pre>	Getter	ContainerID	kW	Get a container's power usage
tick()	Notification	N/A	N/A	Invoked by ecovisor every Δt

Table 1: Ecovisor's narrow API that provides application's visibility and control over their virtual energy system.

Ecovisor: A Virtual Energy System for Carbon-Efficient Applications

Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David Irwin, Prashant Shenoy

Direction

Can I change where we are headed?

The Green Web Foundation is working towards a fossil-free internet by 2030.

The internet should be a global public good—healthy for the people who use it.

Ambitious corporate targets (cont)

Google Data Centers

Q

Locations Innovations Data and Security Efficiency 24/7 Clean Energy Gallery Life@ Podcast Discover FAQ

24/7 Carbon-Free Energy by 2030

Over the past decade, Google purchased more renewable energy than any other company, based on cumulative renewable electricity purchased in megawatt-hours from 2012 to 2021. Now, as we enter our third decade of climate action, we're targeting our most ambitious sustainability goal to date: we intend to run on 24/7 carbon-free energy (CFE) – everywhere, at all times. And we aim to do it by 2030.

Ambitious corporate targets (cont)

Building targets into your governance

Open sourcing the way to set direction

$\leftarrow \rightarrow G$ \bigcirc \bigcirc \bigcirc \bigcirc	https://github.com/pencleanenergy/MATCH-model	Ē 133%	• !! ■ % ☆ ♡ ± ≯ ♦ 兌 ≡				
Q Search or jump to	Pull requests issues	Codespaces Ma	rketplace Explore 🗘 + - 🌚 -				
🛱 pencleanenergy / MA	TCH-model Public	⊙ Watch 1 +	% Fork 4 ▼ ★ Starred 14 ▼				
<> Code • Issues 8	<> Code 🕢 Issues 8 🕅 Pull requests 1 🖓 Discussions 🕑 Actions 🕛 Security 🗠 Insights						
<mark>१° master →</mark> १° 3 branch	nes 🟷 0 tags Go to file Add file -	<> Code -	About				
grgmiller Merge pull req	uest #66 from pen 4c4122a 2 weeks ago	(169 commits)	MATCH model for planning time- coincident clean energy portfolios				
github	Create pull_request_template.md	3 months ago	🛱 Readme				
MODEL_RUNS	update pyomo environment	2 weeks ago	좌 AGPL-3.0 license				
doc	first commit	2 years ago	 14 stars 1 watching 				
match_model	update pyomo environment	2 weeks ago	양 4 forks				
🗅 .gitignore	update to MATCH	last year					
🗋 AUTHORS	add AGPLv3	3 months ago	Releases				
CHANGELOG.md	sync with master	3 months ago	No releases published				
CLA.md	add CLA	3 months ago					

"We have completely got rid of our dependency on Russian fossil fuels. It went much faster than we expected...

So we have the possibility to redirect or reorient the additional funding of REPowerEU – $\approx \in 250$ billion – to our net-zero industries."

European Commission President Ursula von der Leyen, 1st Feb 2023

RECAP

A model for thinking about digital sustainability - **CID**

Consumption

Can I change how much we need?

Intensity

Can I change how much harm is done?

Direction

Can I change where we are headed?

- 1. **Achievable** Big firm buy in already, but doable at small scale too.
- 2. Save carbon climate emergency, remember?
- 3. **Save lives** 5m+ avoidable deaths / year from poor air quality globally, primarily from burning fossil fuels
- 4. **Save money** fossil fuels are expensive with volatile prices
- 5. **Improve retention among staff** ppl 💚 greener firms
- 6. Energy security geopolitics and local resiliency

Thanks!

If you want know more: we publish open source code and open data in this field, and if you want help we offer training and consulting.

https://www.thegreenwebfoundation.org/fosdem/

Chris Adams / @mrchrisadams / @mrchrisadams@mastodon.social

chris@thegreenwebfoundation.org